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ABSTRACT:In this paper, we present a batch arrival non- Markovian queuing model with second optional 

service, subject to random break downs and multiple vacations. Batches arrive in Poisson stream with mean 

arrival rate λ, such that all customers demand the first `essential' service, whereas only some of them demand 

the second `optional' service. The service times of the both first essential service and the second optional service 

are assumed to follow general (arbitrary) distribution with distribution function 𝐵1(𝑣) and 𝐵2(𝑣) respectively. 

The server may undergo breakdowns which occur Aaccording to Poisson process with breakdown rate. Once 

the system encounter break downs it enters the repair process and the repair time is followed by exponential 

distribution with repair rate𝛼. The server takes vacation each time the system becomes empty and the vacation 

period is assumed to be exponential distribution. On returning from vacation if the server finds no customer 

waiting in the system, then the server again goes for vacation until he finds at least one unit in the system. The 

time-dependent probability generating functions have been obtained in terms of their Laplace transforms and 

the corresponding steady state results have been derived explicitly. Also the mean queue length and the mean 

waiting time have been found explicitly.  

Keywords: 𝑀[𝑋] /𝐺/1  Queue First essential service, Second optional service, Multiple vacations. 

SUBJECT CLASSIFICATION AMS 60K25, 60K30 

 

I. INTRODUCTION 
The research study on queuing systems with server vacation has become an extensive and interesting area in 

queuing theory literature. Server vacations are used for utilization of idle time for other purposes. Vacation 

queuing models has been modeled effectively in various situations such as production, banking service, 

communication systems, and computer networks etc. Numerous authors are interested in studying queuing 

models with various vacation policies including single and multiple vacation policies. Batch arrival queue with 

server vacations was investigated by Yechiali (1975). An excellent comprehensive studies on vacation models 

can be found in Takagi (1991) and Doshi (1986) research papers. One of the classical vacation model in queuing 

literature is Bernoulli scheduled server vacation. Keilson and Servi(1987) introduced and studied vacation 

scheme with Bernoulli schedule discipline. Madan(2001) studied queue system with compulsory vacation in 

which the server should go for vacation with probability 1 whenever the system becomes empty. Later on, the 

same author discussed many queuing models with Bernoulli scheduled server vacation Baba(1986) employed 

the supplementary variable technique for deriving the transform solutions of waiting time for batch arrival with 

vacations.  
     

Relating with the server of a queuing system, the server may be assumed as a reliable one, but this is not the 

case in most of real scenarios that the server will not be last forever in order to provide service. So in this 

context, numerous papers of the server may be assumed unreliable, which can encounter breakdown. Thus 

queuing model with server break down is a remarkable and unavoidable phenomenon and the study of queues 

with server breakdowns and repairs has importance not only in the point of theoretic view but also in the 

engineering applications. Avi-Itzhak(1963) considered some queuing problems with the servers subject to 

breakdown. Kulkarni et al.(1990) studied retrial queues with server subject to breakdowns and repairs. 

Tang(1997) studied M/G/1 model with server break down and discussed reliability of the system. Madan et 

al.(2003) obtained the steady state results of single server Markovian model with batch service subject to queue 

models with random breakdowns. Queuing systems with random break downs and vacation have also been 

keenly analyzed by many authors including Grey (2000) studied vacation queuing model with service 

breakdowns. Madan and Maraghi (2009) have obtained steady state solution of  batch arrival queuing system 

with random breakdowns and Bernoulli schedule server vacations having general vacation time. 

Thangaraj(2010) studied the transient behaviour of single server with compulsory vacation and random break 

downs. 

Queuing models with Second optional service plays a prominent role in the research study of queuing 

theory. In this type of queuing model, the server performs first essential service to all arriving customers and 

after completing the first essential service, second optional service will be provided to some customers those 
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who demand a second optional service. Madan(2000) has first introduced the concept of second optional service 

of an M/G/1 queuing system in which he has analyzed the time-dependent as well as the steady state behaviour 

of the model by using supplementary variable technique. Medhi(2001)proposed an M/G/1 queuing model with 

second optional channel who developed the explicit expressions for the mean queue length and mean waiting 

time. Later Madhan(2002) studied second optional service byincorporating Bernoulli schedule server vacations. 

Gaudham. Choudhury(2003) analyzed some aspects of M/G/1 queuing system with second optional service and 

obtained the steady state queue size distribution at the stationary point of time for general second optional 

service. A batch arrival with two phase service model with re-service for each phase of the service has been 

analyzed by Madan et al.(2004). Wang (2004) studied an M/G/1 queuing system with second optional service 

and server breakdowns based on supplementary variable technique. Kalyanaraman et al.(2008) studied 

additional optional batch service with vacation for single server queue.  

 

In this paper we consider queuing system such that the customers are arriving in batches according to 

Poisson stream. The server provides a first essential service to all incoming customers and a second optional 

service will be provided to only some of them those who demand it. Both the essential and optional service 

times are assumed to follow general distribution. The vacation times and the repair time are exponentially 

distributed. Whenever the system meets a break down, it enters in to a repair process and the customer whose 

service is interrupted goes back to the head of the queue. Customers arrive in batches to the system and are 

served on a first come-first served basis. 

  

The rest of the paper is organized as follows. The mathematical description of our model is in Section 2 and 

equations governing the model are given in Section 3. The time dependent solutions have been obtained in 

Section 4 and the corresponding steady state results have been derived explicitly in Section 5.  

 

II. MATHEMATICAL DESCRIPTION OF THE MODEL 
The following assumptions are to be used describe the mathematical model of our study:  

 Customers arrive at the system in batches of variable size in a compound Poisson process and they are 

provided service one by one on a ‘first come first served’ basis. Let 𝛴𝐶𝑘  𝑑𝑡 (𝑘 =  1, 2, 3, . . . ) be the 

first order probability that a batch of k customers arrives at the system during a short interval of time 

(t, t + dt], 𝑤ℎ𝑒𝑟𝑒 0 ≤  𝐶𝑘 ≤  1 𝑎𝑛𝑑 𝛴 𝐶𝑘 =  1 𝑎𝑛𝑑 𝜆 >  0 is the mean arrival rate of batches. Let ; k = 

1, 2, 3, ... be the first order probability of arrival of ’k’ customers in batches in the system during a 

short period of time (t, t+dt) 𝑤ℎ𝑒𝑟𝑒 0 ≤  𝐶𝑘  ≤  1; 𝐶𝑘 = 1,  𝜆 >  0 is the mean arrival rate of 

batches.  

 

 There is a single server which provides the first essential service to all arriving customers. Let 

𝐵1(𝑣) 𝑎𝑛𝑑 𝑏1(𝑣) respectively be the distribution function and the density function of the first service 

times respectively.  

 

 As soon as the first service of a customer is completed, then he may demand for the second service 

with probability r, or else he may decide to leave the system with probability 1- r in which case 

another customer at the head of the queue (if any) is taken up for his first essential service.  

 

 The second service times as assumed to be general with the distribution function 𝐵2(𝑣)  and the 

density function  𝑏2(𝑣). Further, Let 𝜇𝑖(𝑥)𝑑𝑥 be the conditional probability density function of  𝑖𝑡ℎ  

service completion during the interval ( x, x+dx] given that the elapsed service time is x. 

 

 If there is no customer waiting in the queue, then the server goes for a vacation. The vacation periods 

are exponentially distributed with mean vacation time 
 1

𝛾
 . On returning from vacation if the server again 

founds no customer in the queue, then it goes for another vacation. So the server takes multiple 

vacations 

 

 The system may break down at random and breakdowns are assumed to occur according to a Poisson 

stream with mean breakdown rate α > 0 

 

 Once the system breaks down, it enters a repair process immediately. The repair times are 

exponentially distributed with mean repair rate β > 0.  

 

 Various stochastic processes involved in the system are independent of each others.  
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III. DEFINITIONS AND EQUATIONS GOVERNING THE SYSTEM 
  

 𝑃𝑛
𝑖   𝑥, 𝑡 = probability that at time 't' the server is active providing ith service and there are 'n' customers in 

the queue including the one being served and the elapsed service time for this customer is x. Consequently 

𝑃𝑛
𝑖   𝑡 = denotes the probability that at time't' there are 'n' customers in the queue excluding the one 

customer in 𝑖𝑡ℎ  service irrespective of the value of x. 

  

 𝑉𝑛 𝑡   = the probability that at time 't' there are 'n' customers in the queue and the server is on vacation 

irrespective of the value of x.  

 

 𝑅𝑛 𝑡 = Probability that at time t, the server is inactive due to break down and the system is under repair 

while there are 'n'  customers in the queue. 

 

The queuing model is then, governed by the following set of differential-difference equations: 

Let NQ(t) denote the queue size( excluding one in service) at time t. We introduce the random variable Y(t) as 

follows 

 

𝑌 (𝑡) =  

1, 𝑖𝑓 𝑡ℎ𝑒 𝑠𝑦𝑠𝑡𝑒𝑚 𝑖𝑠 𝑏𝑢𝑠𝑦 𝑤𝑖𝑡ℎ first essential service 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡     
  2, 𝑖𝑓 𝑡ℎ𝑒 𝑠𝑦𝑠𝑡𝑒𝑚 𝑖𝑠 𝑏𝑢𝑠𝑦 𝑤𝑖𝑡ℎ 𝑠𝑒𝑐𝑜𝑛𝑑  service 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡                  

3, 𝑖𝑓 𝑡ℎ𝑒 𝑠𝑦𝑠𝑡𝑒𝑚 𝑖𝑠 𝑜𝑛 𝑣𝑎𝑐𝑎𝑡𝑖𝑜𝑛 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡                                            

  

 

We introduce the supplementary variable as, 

𝐿 (𝑡) =  

𝐵1
0 (𝑡)     𝑖𝑓  𝑌 𝑡 = 1                                                                        

    𝐵2
0 (𝑡)      𝑖𝑓  𝑌 𝑡 = 2                                                                             

𝑉0(𝑡)     𝑖𝑓  𝑌 𝑡 = 3                                                                         

  

 

where 

𝐵1
0 (𝑡)     =   elapsed service time for the first essential service at time t, 

𝐵2
0  𝑡     =   elapsed service time for the second service at time t, 

𝑉0(𝑡)     =   elapsed vacation time of the server at time t. 

 

The process {𝑁𝑄(𝑡), L(t) } (is a continuous time Markov process. we define 

the probabilities for i = 1,2. 

𝑃𝑛
𝑖   𝑥, 𝑡 = 𝑃𝑟𝑜𝑏  𝑁𝑄(𝑡) = 𝑛, 𝐿 𝑡 =  Bi

0 ; 𝑥 < 𝐵𝑖
0 ≤ 𝑥 + 𝑑𝑥 ;  𝑥 > 0,𝑛 > 0 

 

In steady state condition, we have 

 

𝑃𝑛
𝑖(𝑥) 𝑑𝑥 =  lim𝑡→∞ 𝑃𝑛

𝑖  (x, t),    i=1, 2  x > 0 ;  n ≥ 0 

 

𝑉𝑛 = lim
𝑡→∞

𝑉𝑛 𝑡    ;    𝑛 ≥ 0 

 

𝑅𝑛  = lim
𝑡→∞

𝑅𝑛 𝑡 ;   𝑛 ≥ 0 

 

Assume that 

 

𝑉0 0 = 1,𝑉𝑛 0 = 0 

 

And for i=1,2 

 

𝐵𝑖 0 ,𝐵𝑖 ∞ = 1 

Also V(x) and 𝐵𝑖 𝑥   are continuous at 𝑥 = 0. 

 

The model is then, governed by the following set of differential-difference equations: 

 
𝜕

𝜕𝑥
𝑃𝑛
 1  𝑥, 𝑡 +

𝜕

𝜕𝑡
𝑃𝑛
 1  𝑥, 𝑡 + (𝜆 + µ

1
(𝑥) + 𝛼)𝑃𝑛

 1 (𝑥, 𝑡)  = 𝜆 𝐶𝑘𝑃𝑛−𝑘
 1  𝑥, 𝑡  ,𝑛 ≥ 1∞

𝑘=1      (3.1) 
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𝜕

𝜕𝑥
𝑃0
 1  𝑥, 𝑡 +  

𝜕

𝜕𝑡
𝑃𝑛
 1  𝑥, 𝑡 +  𝜆 + µ

1
(𝑥) + 𝛼 𝑃0

 1  𝑥, 𝑡 = 0        (3.2) 

 
𝜕

𝜕𝑥
𝑃𝑛
 2  𝑥, 𝑡 + 

𝜕

𝜕𝑡
𝑃𝑛
 2  𝑥, 𝑡 + (𝜆 + µ

2
(𝑥) + 𝛼)𝑃𝑛

 2 (𝑥, 𝑡)  = 𝜆 𝐶𝑘𝑃𝑛−𝑘
 2  𝑥, 𝑡  , 𝑛 ≥ 1∞

𝑘=1    (3.3) 

 
𝜕

𝜕𝑥
𝑃0
 2  𝑥, 𝑡 + 

𝜕

𝜕𝑡
𝑃𝑛
 2  𝑥, 𝑡 +  𝜆 + µ

2
(𝑥) + 𝛼 𝑃0

 2  𝑥, 𝑡 = 0      (3.4) 

 
𝑑

𝑑𝑡
𝑉𝑛 𝑡 + (𝜆 + 𝛾)𝑉𝑛 𝑡 = 𝜆 𝐶𝑘𝑉𝑛−𝑘

∞
𝑘=1  𝑡  ,    𝑛 ≥ 1        (3.5) 

 
𝑑

𝑑𝑡
𝑉0 𝑡 +   𝜆 + 𝛾 𝑉0 𝑡 = 𝛾𝑉0 𝑡 +   1 − 𝑟  𝑃0

1∞

0
 𝑥, 𝑡 µ

1
 𝑥 𝑑 +  𝑃0

2∞

0
 𝑥, 𝑡 µ

2
 𝑥 𝑑𝑥   (3.6) 

 
𝑑

𝑑𝑡
𝑅0 𝑡 + (λ + β) 𝑅0 𝑡 = 0         (3.7) 

 
𝑑

𝑑𝑡
𝑅𝑛 𝑡 +   𝜆 +  𝛽 𝑅𝑛 𝑡  = 𝜆 𝐶𝑘𝑅𝑛−𝑘

∞
𝑘=1  𝑡 + 𝛼  𝑃𝑛−1

 1 (𝑥, 𝑡) + 𝛼  𝑃𝑛−1 
 2  𝑥, 𝑡 ,

∞

0

∞

0
  𝑛 ≥ 1  (3.8) 

 
Equations are to be solved subject to the following boundary conditions: 

 

𝑃0
(1) 0, 𝑡 = 𝛾𝑉1 𝑡 + 𝛽𝑅1 𝑡 +  1 − 𝑟  𝑃1

 1  𝑥, 𝑡 𝜇2 𝑥 𝑑𝑥 +  𝑃1
 2  𝑥, 𝑡 𝜇2 𝑥 𝑑𝑥

∞

0

∞

0
     (3.9) 

 

𝑃𝑛
 1  0 = 𝛾𝑉𝑛+1 𝑡 + 𝛽𝑅𝑛+1 𝑡 +  1 − 𝑟  𝑃𝑛+1

 1  𝑥, 𝑡 𝜇2 𝑥 𝑑𝑥 +  𝑃𝑛+1
 2  𝑥, 𝑡 𝜇2 𝑥 𝑑𝑥

∞

0

∞

0
,𝑛 ≥ 1     (3.10) 

 
 

𝑃𝑛
 2 (0) =  𝑃𝑛

(1)
(𝑥)  𝜇1 𝑥 𝑑𝑥

∞

0
 , 𝑛 ≥ 0      (3.11) 

 

IV. TIME DEPENDENT SOLUTION 
 

Generating functions of the queue length  
Now we define the probability generating function as follows 

𝑃 1 (𝑥, 𝑡) =  𝑃𝑛
 1 (𝑥, 𝑧, 𝑡)𝑧𝑛∞

0 ;    𝑃 1  𝑧, 𝑡 =  𝑃𝑛
 1 (𝑡)𝑧𝑛∞

0 , |𝑧| ≤ 1 , 𝑥 > 0 
 

𝑃 2  𝑥, 𝑧, 𝑡 =  𝑃𝑛
 2  𝑥, 𝑡 𝑧𝑛∞

0 ;  𝑃 2  𝑧, 𝑡 =  𝑃𝑛
 2 (𝑡)𝑧𝑛∞

0 , |𝑧| ≤ 1 , 𝑥 > 0 

                  
𝑉 𝑧, 𝑡 =    𝑧𝑛𝑉𝑛 𝑡      ;    𝑅 𝑧, 𝑡 =  𝑧𝑛𝑅𝑛(𝑡)      ∞

0 ;         𝐶 𝑧 =  𝐶𝑛
∞
0 𝑧𝑛 ,   |𝑧| ≤ 1   ∞

0   (4.1) 
 
Taking Laplace transforms of equations (3.1) to (3.11) 

 
𝜕

𝜕𝑥
  𝑃 𝑛

(1) 𝑥, 𝑠 + (𝑠 + 𝜆 + µ
1 
 x +  α)𝑃 𝑛

(1) 𝑥, 𝑠 = 𝜆 𝐶𝑘𝑃 𝑛−𝑘
(1)  𝑥, 𝑠 ∞

𝑘=1 ,    𝑛 ≥ 1  (4.2) 

 
𝜕

𝜕𝑥
  𝑃 0

(1) 𝑥, 𝑠 + (𝑠 + 𝜆 + µ
1 
 x +  α)𝑃 0

(1) 𝑥, 𝑠 = 0       (4.3) 

 
𝜕

𝜕𝑥
  𝑃 𝑛

(2) 𝑥, 𝑠 + (𝑠 + 𝜆 + µ
1 
 x +  α)𝑃 𝑛

(2) 𝑥, 𝑠 = 𝜆 𝐶𝑘𝑃 𝑛−𝑘
(2)  𝑥, 𝑠 ∞

𝑘=1  ,    𝑛 ≥ 1   (4.4) 

 
𝜕

𝜕𝑥
  𝑃 0

(2) 𝑥, 𝑠 +  𝑠 + 𝜆 + µ
1 
 x +  α 𝑃 0

 2  𝑥, 𝑠 = 0      (4.5) 

 

 s + λ +  γ V 0 s = 1 + (1 − r) 𝑃 0
 1  𝑥, 𝑠 𝜇2 𝑥 𝑑𝑥

∞

0
+  𝑃 0

 2  𝑥, 𝑠 𝜇2 𝑥 𝑑𝑥
∞

0
+ γV 0 s   (4.6) 

 
 s + λ + γ V n s = λ V n−1    s  , 𝑛 ≥ 1       (4.7) 
 

 s + λ +  β R 0 s = α 𝑃 0
(1) 𝑥, 𝑠 𝜇1 𝑥 𝑑𝑥

∞

0
+ α 𝑃 0

 2  𝑥, 𝑠 𝜇2 𝑥 𝑑𝑥
∞

0
   (4.8) 

 
 s + λ + β R n s = λ R n−1    s  , 𝑛 ≥ 1         (4.9) 
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𝑃 0
 1  𝑜, 𝑠 =  γ V 1 𝑠 +  𝛽 R 1 𝑠 +  1 − 𝑟  𝑃 1

 1  𝑥, 𝑠 𝜇2 𝑥 𝑑𝑥 + 𝑞  𝑃 1
 2  𝑥, 𝑠 𝜇2 𝑥 𝑑𝑥 

∞

0

∞

0
 (4.10) 

 

𝑃 𝑛  
 1  𝑜, 𝑠 =  γ V 1 𝑠 +  𝛽  R 1 𝑠 +  1 − 𝑟  𝑃 𝑛+1

 1  𝑥, 𝑠 𝜇1 𝑥 𝑑𝑥 +  𝑃 𝑛+1
 2  𝑥, 𝑠 𝜇2 𝑥 𝑑𝑥,

∞

0

∞

0
     𝑛 ≥ 1      (4.11) 

𝑃 𝑛  
 2  𝑜, 𝑠 =  𝑃 𝑛

(1) 𝑥, 𝑠 𝜇1 𝑥 𝑑𝑥
∞

0
 , 𝑛 ≥ 0      (4.12) 

We multiply both sides of equations (4.2) and (4.3) by suitable powers of z, sum 

over n and use (4.1) and simplify. We thus have after algebraic simplifications 
𝜕

𝜕𝑥
𝑃 (1) 𝑥, 𝑧, 𝑠 + [𝑠 + 𝜆 − 𝜆𝐶(𝑧) + µ

1
(𝑥) + 𝛼]𝑃 (1)(𝑥, 𝑧, 𝑠)  = 0   (4.13) 

Performing similar operations on equations (4.4) and (4.5) and using (4.1), We have 
𝜕

𝜕𝑥
𝑃 2  𝑥, 𝑧, 𝑠 +  𝑠 + 𝜆 − 𝜆𝐶 𝑧 + µ

1
 𝑥 + 𝛼 𝑃 2  𝑥, 𝑧, 𝑠 = 0     (4.14) 

Similar operations on equations (4.6),(4.7),(4.8) and (4.9) yields 

  𝑠 + 𝜆 − 𝜆𝐶 𝑧 + 𝛾 𝑉  𝑧, 𝑠 = 1 + (1 − r) 𝑃 0
 1  𝑥, 𝑠 𝜇2 𝑥 𝑑𝑥

∞

0
+  𝑃 0

 2  𝑥, 𝑠 𝜇2 𝑥 𝑑𝑥
∞

0
+ γV 0 s       (4.15) 

 𝑠 + 𝜆 − 𝜆𝐶 𝑧 + 𝛽 𝑅  𝑧, 𝑠 = 𝛼𝑧  𝑃 (1) 𝑥, 𝑧, 𝑠 𝑑𝑥 + 𝛼𝑧  𝑃 2  𝑥, 𝑧, 𝑠 𝑑𝑥
∞

0

∞

0
    

 (4.16) 

Now  We multiply both sides of equation (4.10) by z, multiply both sides of equation (4.11) by 𝑧𝑛+1, sum over n 

from 1to ∞ , add the two results and use (4.1)&(4.6).Thus we obtain after mathematical adjustments 

 

𝑧 𝑃 (1) 0, 𝑧, 𝑠 =

 1 − 𝑟  𝑃  1  𝑥, 𝑧, 𝑠 𝜇1 𝑥 𝑑𝑥
∞

0
+  𝑃  2  𝑥, 𝑧, 𝑠 𝜇2 𝑥 𝑑𝑥 + 𝛾V  z, s 

∞

0
−  1 − r  𝑃 0

 1  𝑥, 𝑠 𝜇1 𝑥 𝑑𝑥
∞

0
−

 𝑃 0
 2  𝑥, 𝑠 𝜇2 𝑥 𝑑𝑥

∞

0
+ β𝑅  𝑧, 𝑠          (4.17) 

 

𝑃  2 (0, 𝑧, 𝑠) =  𝑃 (1) 𝑥, 𝑧, 𝑠 𝜇1 𝑥 𝑑𝑥
∞

0
       (4.18) 

Using (4.15 in (4.17), we get 

𝑧 𝑃 (1) 0, 𝑧, 𝑠 = (1 − 𝑟) 𝑃  1  𝑥, 𝑧, 𝑠 𝜇1 𝑥 𝑑𝑥
∞

0
+  𝑃  2  𝑥, 𝑧, 𝑠 𝜇2 𝑥 𝑑𝑥

∞

0
+ 1 − [𝑠 + 𝜆 − 𝜆𝐶(𝑧]𝑉  𝑧, 𝑠 +

β𝑅  𝑧, 𝑠             

  (4.19) 

Integrating equations (4.2), (4.3) and (4.4) between 0 and x, we get 

𝑃  1 (𝑥, 𝑧, 𝑠) = 𝑃 (1) 0, 𝑧, 𝑠    𝑒− 𝑠+𝜆−𝜆𝐶 𝑧 +𝛼 𝑥− 𝜇1 𝑡 𝑑𝑡   
∞

0       (4.20) 

𝑃  2  𝑥, 𝑧, 𝑠 = 𝑃  2  0, 𝑧, 𝑠   𝑒− 𝑠+𝜆−𝜆𝐶 𝑧 +𝛼 𝑥− 𝜇2 𝑡 𝑑𝑡
∞

0     (4.21) 

Again integrating equation (4.10) w.r.to x, we have 

𝑃 (1) 𝑧, 𝑠 = 𝑃 (1) 0, 𝑧, 𝑠    
1−𝐵 1 𝑠+𝜆−𝜆𝐶 𝑧 +𝛼 

 𝑠+𝜆−𝜆𝐶 𝑧 +𝛼 
       (4.22) 

𝑤ℎ𝑒𝑟𝑒 𝐵 1 𝑠 + 𝜆 − 𝜆𝐶 𝑧 + 𝛼 =   𝑒− 𝑠+𝜆−𝜆𝐶 𝑧 +𝛼 𝑥𝑑𝐵 1 𝑥 
∞

0
    (4.23) 

is the Laplace transform of first stage of service time. 

Now from equation (4.10) after some simplification and using equation (1.1 ) , we obtain 

 𝑃 (1) 𝑥, 𝑧, 𝑠 𝜇1 𝑥 𝑑𝑥 = 𝑃  1 (0, 𝑧, 𝑠)𝐵 1
∞

0
 𝑠 + 𝜆 − 𝜆𝐶 𝑧 + 𝛼     (4.24) 

Again integrating equation (4.11) w.r.to x, we have 

𝑃  2  𝑧, 𝑠 = 𝑃  2  0, 𝑧, 𝑠   
1−𝐵 2 𝑠+𝜆−𝜆𝐶 𝑧 +𝛼 

 𝑠+𝜆−𝜆𝐶 𝑧 +𝛼 
       (4.25) 

𝑤ℎ𝑒𝑟𝑒 𝐵 2 𝑠 + 𝜆 − 𝜆𝐶 𝑧 + 𝛼 =   𝑒− 𝑠+𝜆−𝜆𝐶 𝑧 +𝛼 𝑥𝑑𝐵 2 𝑥 
∞

0
    (4.26) 

is the Laplace transform of second stage of service time. 

Now from equation (4.11) after some simplification and using equation (1.1 ) , we obtain 

 𝑃  2  𝑥, 𝑧, 𝑠 𝜇2 𝑥 𝑑𝑥 = 𝑃  2 (0, 𝑧, 𝑠)𝐵 2
∞

0
 𝑠 + 𝜆 − 𝜆𝐶 𝑧 + 𝛼    (4.27) 

Using (4.24)& (4.27) in (4.16) we get, 

 𝑠 + 𝜆 − 𝜆𝐶 𝑧 + 𝛽 𝑅  𝑧 = 𝛼𝑧𝑃 (1) 0, 𝑧, 𝑠 
[1−𝐵 1 𝑠+𝜆−𝜆𝐶 𝑧 +𝛼 𝐵 2 𝑠+𝜆−𝜆𝐶 𝑧 +𝛼 ]

 𝑠+𝜆−𝜆𝐶 𝑧 +𝛼 
   (4.28)  

Now using equations (4.18) (4.21), (4.23),(4.24),(4.26) and (4.27) in equation (4.19) and solving for 𝑃 (1) 0, 𝑧   
we get 

𝑃 (1) 0, 𝑧, 𝑠 =
𝑓1 𝑧 𝑓2 𝑧 [1− 𝑠+𝜆−𝜆𝐶 𝑧  𝑉  𝑧 ,𝑠 ]   

𝐷𝑅
     (4.29) 

Where 𝐷𝑅 = 𝑓1 𝑧 𝑓2 𝑧  𝑧 −  1 − 𝑟 𝐵 1 𝑠 + 𝜆 − 𝜆𝐶 𝑧 + 𝛼 −𝑟 𝐵 1 𝑠 + 𝜆 − 𝜆𝐶 𝑧 + 𝛼 𝐵 2 𝑠 +  𝜆 − 𝜆𝐶 𝑧 +
𝛼−𝛼𝛽𝑧(1−1−𝑟𝐵1𝑠+𝜆−𝜆𝐶𝑧+𝛼−𝑟 𝐵1𝑠+𝜆−𝜆𝐶𝑧+𝛼𝐵2𝑠+𝜆−𝜆𝐶𝑧+𝛼 

     (4.30) 

𝑓1 z = s + λ –  λC z +  α   and  𝑓2 z = s + λ –  λC(z)  +  β 

Substituting the value of 𝑃 1  0, 𝑧  from equation (4.22) into equations (4.13), (4.16) & (4.18) we get 
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𝑃 (1) 𝑧, 𝑠 =
𝑓2 𝑧 [1−𝐵 1 𝑠+𝜆−𝜆𝐶 𝑧 +𝛼 ]

𝐷𝑅
[1 −  𝑠 + 𝜆 − 𝜆𝐶 𝑧  𝑉  𝑧, 𝑠 ]      (4.31) 

𝑃  2  𝑧, 𝑠 =
𝑓2 𝑧 𝐵 1 𝑠+𝜆−𝜆𝐶 𝑧 +𝛼 [1−𝐵 2 𝑠+𝜆−𝜆𝐶 𝑧 +𝛼 ]

𝐷𝑅
[1 −  𝑠 + 𝜆 − 𝜆𝐶 𝑧  𝑉  𝑧, 𝑠 ]      (4.32) 

𝑅 𝑧, 𝑠 =
𝛼𝑧  1− 1−𝑟 𝐵 1 𝑠+𝜆−𝜆𝐶 𝑧 +𝛼 −𝑟  𝐵 1 𝑠+𝜆−𝜆𝐶 𝑧 +𝛼 𝐵 2 𝑠+𝜆−𝜆𝐶 𝑧 +𝛼  

𝐷𝑅
[1 −  𝑠 + 𝜆 − 𝜆𝐶 𝑧  𝑉  𝑧, 𝑠 ]    (4.33) 

In this section we shall derive the steady state probability distribution for our Queuing model. To define the 

steady state probabilities, suppress the arguments where ever it appears in the time dependent analysis. By using 

well known Tauberian property, 

lim
𝑠→0

𝑠𝑓  𝑠 = lim
𝑡→∞

𝑓(𝑡) 

𝑃 1  𝑧 =  
𝑓2 𝑧  1−𝐵1 𝜆−𝜆𝐶 𝑧 +𝛼  

𝐷𝑅
𝜆(𝐶 𝑧 − 1)𝑉 𝑧      (4.34) 

 

𝑃 2  𝑧 =  
𝑓2 𝑧 𝐵1 𝜆−𝜆𝐶 𝑧 +𝛼  1−𝐵2 𝜆−𝜆𝐶 𝑧 +𝛼  

𝐷𝑅
𝜆(𝐶 𝑧 − 1)𝑉 𝑧     (4.35) 

 

𝑅 𝑧 =
𝛼𝑧 [1− 1−𝑟 𝐵1 𝑠+𝜆−𝜆𝐶 𝑧 +𝛼 −𝑟  𝐵1 𝑠+𝜆−𝜆𝐶 𝑧 +𝛼 𝐵2 𝑠+𝜆−𝜆𝐶 𝑧 +𝛼 ]

𝐷𝑅
𝜆(𝐶 𝑧 − 1)𝑉 𝑧   (4.36) 

In order to determine 𝑃 1  𝑧 ,𝑃 2  𝑧 , R(z)  completely, we have yet to determine the unknown 𝑉(1) which 

appears in the numerator of the right sides of equations (4.34), (4.35) and (4.36). For that purpose, we shall use 

the normalizing condition. 

𝑃 1  1 + 𝑃 2  1 + 𝑉 1 + 𝑅 1 = 1     (4.37) 

𝑃 1 (1) =
𝜆𝛽 𝐶 ′ 1  1−𝐵1 𝛼  

𝑑𝑟
𝑉(1)     (4.38) 

𝑃 2 (1) =
𝜆𝛽 𝐶 ′ 1 𝐵1(𝛼)(1−𝐵2(𝛼))

𝑑𝑟
𝑉(1)      (4.39) 

𝑅 1 =
𝜆𝛼𝐶 ′ 1 (1−(1−𝑟)𝐵1 𝛼 −𝑟𝐵1 𝛼 𝐵2 𝛼 )

𝑑𝑟
𝑉(1)     (4.40) 

where   𝑑𝑟 = 𝛼𝛽(1 − 𝑝)𝐵1 𝛼 𝐵2 𝛼 −  1 − 𝐵1 𝛼 𝐵2 𝛼  𝜆𝐶
′ 1  𝛼 + 𝛽  

𝑃 1  1 ,𝑃 2  1  𝑎𝑛𝑑 𝑅 1  denote the steady state probabilities that the server is providing first stage of service, 

second stage of service and server under repair without regard to the number of customers in the queue. Now 

using equations (4.38), (4.39), (4.40) into the normalizing condition (4.37) and simplifying, we obtain 

𝑉(1) =  1 −
𝜆𝐶 ′ 1 

𝛽[ 1−𝑟 𝐵1 𝛼 +𝑟𝐵1 𝛼 𝐵2 𝛼 ]
−

𝜆𝐶 ′ 1 

𝛼 [ 1−𝑟 𝐵1 𝛼 +𝑟𝐵1 𝛼 𝐵2 𝛼 ]
+

𝜆𝐶 ′ 1 

𝛽
+

𝜆𝐶 ′ 1 

𝛼
     (4.41) 

and hence, the utilization factor ρ of the system is given by 

𝜌 =  
𝜆𝐶 ′ 1 

𝛽 [ 1−𝑟 𝐵1 𝛼 +𝑟𝐵1 𝛼 𝐵2 𝛼 ]
+

𝜆𝐶 ′ 1 

𝛼[ 1−𝑟 𝐵1 𝛼 +𝑟𝐵1 𝛼 𝐵2 𝛼 ]
−

𝜆𝐶 ′ 1 

𝛽
−

𝜆𝐶 ′ 1 

𝛼
   (4.42) 

      
where   ρ < 1 is the stability condition under which the steady states exits. 

 

5. The Mean queue size and the mean system size 

   

Let  𝑃𝑞(z) denote the probability generating function of the queue size irrespective of the server state. Then 

adding equation (4.27), (4.28) and (4.29) we obtain 

 𝑃𝑞(z) =  𝑃 1 (𝑧) + 𝑃 2 (𝑧)  +  𝑅(𝑧) 𝑃𝑞 z =  
N(z)

D(z)
      (5.1) 

 

𝑁 𝑧 =   𝜆 𝐶 𝑧 − 1  1 − (1 − 𝑟)𝐵 1 𝜆 − 𝜆𝐶 𝑧 + 𝛼 − 𝑟𝐵 1 𝜆 − 𝜆𝐶 𝑧 + 𝛼 𝐵 2 𝜆 − 𝜆𝐶 𝑧 + 𝛼  (𝛼𝑧

+ 𝑓2 𝑧 )𝑉(𝑧) 
 

𝐷 𝑧 = 𝑓1 𝑧 𝑓2 𝑧  𝑧 − (1 − 𝑟)𝐵 1 𝜆 − 𝜆𝐶 𝑧 + 𝛼 − 𝑟𝐵 1 𝜆 − 𝜆𝐶 𝑧 + 𝛼 𝐵 2 𝜆 − 𝜆𝐶 𝑧 + 𝛼   

            −𝛼𝛽𝑧 1 − (1 − 𝑟)𝐵 1 𝜆 − 𝜆𝐶 𝑧 + 𝛼 − 𝑟𝐵 1 𝜆 − 𝜆𝐶 𝑧 + 𝛼 𝐵 2 𝜆 − 𝜆𝐶 𝑧 + 𝛼   

 
Let   𝐿𝑞  denote the mean number of customers in the queue under the steady state. Then we have 

𝐿𝑞 =  
𝑑

𝑑𝑧
 [𝑃𝑞 z ] at  z = 1 

 
 

𝐿𝑞 = lim𝑧→1
𝐷 ′ 1 𝑁′′ 1 −𝑁′ 1 𝐷 ′′(1)

2𝐷 ′(1)2      (5.2) 

where primes and double primes in (4.36) denote first and second derivative at z = 1, respectively. Carrying out 

the derivative at z = 1 we have 
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𝑁 ′ 1 = 𝜆 𝐶 ′ 1  𝛼 + 𝛽 𝑉(1) 1 − (1 − r)𝐵 1 𝛼 − 𝑟𝐵 1 𝛼 𝐵 2 𝛼     (5.3) 

𝑁 ′′ 1 =  1 − (1 − r)𝐵 1 𝛼 − 𝑟𝐵 1 𝛼 𝐵 2 𝛼  {𝜆𝐶
′′ 1  𝛼 + 𝛽 𝑉 1 − 2  𝜆𝐶 ′ 1  

2

𝑉 1 + 2𝜆𝐶 ′ 1 𝛼𝑉 1 +

2𝜆𝐶 ′ 1  𝛼 + 𝛽 𝑉 ′ 1 } − 2𝜆3  𝐶 ′ 1  
3
 𝛼 + 𝛽 𝑉(1)[ 1 − 𝑟 𝐵 2

′  𝛼 + 𝑟 𝐵 1 𝛼 𝐵 2
′  𝛼 + 𝑟𝐵 2 𝛼 𝐵 1

′  𝛼 ] 

    (5.4) 

𝐷′ 1 = 𝛼𝛽[ 1 − 𝑟 𝐵 1
′  𝛼 + 𝑟 𝐵 1 𝛼 𝐵 2

′  𝛼 ] −  1 −  1 − 𝑟 𝐵 1
′  𝛼 + 𝑟 𝐵 1 𝛼 𝐵 2

′  𝛼  [ 𝛼 + 𝛽 𝜆𝐶 ′ 1 ] 

 (5.5) 
 
 

𝐷′′ 1 = 2𝛼𝛽 1 − r [𝐵   1
′  𝛼 + 𝑟(𝐵 1 𝛼 𝐵 2

′ (𝛼) + 𝐵 2 𝛼 𝐵 2
′ (𝛼))] −  𝛼 + 𝛽 𝜆𝐶 ′′ 1 (1 − (1 −   r)𝐵 1 𝛼 

− 𝑟𝐵 1 𝛼 𝐵 2 𝛼 − 2 𝛼 + 𝛽 𝜆𝐶 ′ 1 [1 − (1 − r)𝐵 1
′  𝛼 − 𝑟(𝐵 1 𝛼 𝐵 2

′  𝛼 +  𝐵 2 𝛼 𝐵 2
′ (𝛼) 

           
 (5.6) 
 
 

Then if we substitute the values from (5.3), (5.4), (5.5) and (5.6) into (5.2) we obtain 𝐿𝑞  in the closed form. 

Further we find the mean system size L using Little’s formula. Thus we have 

𝐿 =  𝐿𝑞 +  𝜌 

 

where 𝐿𝑞  has been found by equation (5.2) and ρ is obtained from equation (4.35). 

 

V. Conclusion 
In this paper we have studied an  𝑀[𝑋]/G/1 with Second Optional Service, Multiple Vacation, Breakdown 

and Repair. 

The probability generating function of the number of customers in the queue is found using the supplementary 

variable technique. This model can be utilized in large scale manufacturing industries and communication 

networks. 
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